Melt-Flow Behaviours of Thermoplastic Materials under Fire Conditions: Recent Experimental Studies and Some Theoretical Approaches

نویسندگان

  • Paul Joseph
  • Svetlana Tretsiakova-McNally
چکیده

Polymeric materials often exhibit complex combustion behaviours encompassing several stages and involving solid phase, gas phase and interphase. A wide range of qualitative, semi-quantitative and quantitative testing techniques are currently available, both at the laboratory scale and for commercial purposes, for evaluating the decomposition and combustion behaviours of polymeric materials. They include, but are not limited to, techniques such as: thermo-gravimetric analysis (TGA), oxygen bomb calorimetry, limiting oxygen index measurements (LOI), Underwriters Laboratory 94 (UL-94) tests, cone calorimetry, etc. However, none of the above mentioned techniques are capable of quantitatively deciphering the underpinning physiochemical processes leading to the melt flow behaviour of thermoplastics. Melt-flow of polymeric materials can constitute a serious secondary hazard in fire scenarios, for example, if they are present as component parts of a ceiling in an enclosure. In recent years, more quantitative attempts to measure the mass loss and melt-drip behaviour of some commercially important chain- and step-growth polymers have been accomplished. The present article focuses, primarily, on the experimental and some theoretical aspects of melt-flow behaviours of thermoplastics under heat/fire conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Flame Retardants on the Melt Dripping Behaviour of Thermoplastic Polymers

Melt flow and dripping of the pyrolysing polymer melt can be both a benefit and a detriment during a fire. In several small-scale fire tests addressing the ignition of a defined specimen with a small ignition source, well-adjusted melt flow and dripping are usually beneficial to pass the test. The presence of flame retardants often changes the melt viscosity crucially. The influence of certain ...

متن کامل

Experimental study on melting and flowing behavior of thermoplastics combustion based on a new setup with a T-shape trough.

The objective of this work is to quantitatively study the burning characteristics of thermoplastics. A new experimental setup with a T-shape trough is designed. Based on this setup, the loop mechanism between the wall fire and pool fires induced by the melting and dripping of thermoplastic can be well simulated and studied. Additionally, the flowing characteristics of pool fires can also be qua...

متن کامل

Some recent advances in understanding the mineralogy of Earth's deep mantle.

Understanding planetary structure and evolution requires a detailed knowledge of the properties of geological materials under the conditions of deep planetary interiors. Experiments under the extreme pressure-temperature conditions of the deep mantle are challenging, and many fundamental properties remain poorly constrained or are inferred only through uncertain extrapolations from lower pressu...

متن کامل

The Rheological Behavior of Wheat Starch Particulates Filled Uncured Styrene-Butadiene Rubber

This study treats one important aspect of starch-filled rubber compounds which is their rheological behavior. Starch-based SBR1712 masterbatches resulting from various formulations were prepared using a mini two roll mill and an internal mixer (Plastograph Brabender).The content in starch was varied from 0 to 50 phr. The effect of starch content on the rheological behavior was ev...

متن کامل

Experimental and theoretical studies on efficient regeneration of carbonyl compounds from oximes under green, mild and completely heterogeneous nanocatalysis

New type of heterogeneous nanocatalyst for deoximation based on Tungsten oxide supported on mesoporousmolecular sieve MCM-41 was developed. This new system representes inexpensive and highly activeheterogeneous nanocatalyst for deoximation under green and mild reaction conditions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015